We are interested in the approximation of 2D elliptic equations with dominated advection and featuring boundary layers. In order to reduce the computational complexity, the domain is split into two subregions, the first one far from the layer, where we can neglect the viscosity effects, and the second one next to the layer. In the latter domain the original elliptic equation is solved, while in the former one, the pure convection equation obtained by the original one by dropping the diffusive term is approximated.

Mortar coupling for heterogeneous partial differential equations

QUARTERONI, ALFIO MARIA
2013-01-01

Abstract

We are interested in the approximation of 2D elliptic equations with dominated advection and featuring boundary layers. In order to reduce the computational complexity, the domain is split into two subregions, the first one far from the layer, where we can neglect the viscosity effects, and the second one next to the layer. In the latter domain the original elliptic equation is solved, while in the former one, the pure convection equation obtained by the original one by dropping the diffusive term is approximated.
2013
Domain Decomposition Methods in Science and Engineering XX
9783642352744
Computational Mathematics and Numerical Analysis; Computational Science and Engineering; Partial Differential Equations; Computer-Aided Engineering (CAD; CAE) and Design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/871966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact