The complex phenomena underlying mechanical contraction of cardiac cells and their influence in the dynamics of ventricular contraction are extremely important in understanding the overall function of the heart. In this paper we generalize previous contributions on the active strain formulation and propose a new model for the excitation-contraction coupling process. We derive an evolution equation for the active fiber contraction based on configurational forces, which is thermodynamically consistent. Geometrically, we link microscopic and macroscopic deformations giving rise to an orthotropic contraction mechanism that is able to represent physiologically correct thickening of the ventricular wall. A series of numerical tests highlights the importance of considering orthotropic mechanical activation in the heart and illustrates the main features of the proposed model.

Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics

QUARTERONI, ALFIO MARIA
2014-01-01

Abstract

The complex phenomena underlying mechanical contraction of cardiac cells and their influence in the dynamics of ventricular contraction are extremely important in understanding the overall function of the heart. In this paper we generalize previous contributions on the active strain formulation and propose a new model for the excitation-contraction coupling process. We derive an evolution equation for the active fiber contraction based on configurational forces, which is thermodynamically consistent. Geometrically, we link microscopic and macroscopic deformations giving rise to an orthotropic contraction mechanism that is able to represent physiologically correct thickening of the ventricular wall. A series of numerical tests highlights the importance of considering orthotropic mechanical activation in the heart and illustrates the main features of the proposed model.
2014
Cardiac electromechanics; Configurational forces; Active strain
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/871757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 79
social impact