Recently, water-gated organic field-effect transistors (WGOFET) have been intensively studied for their application in the biological field. Surprisingly, a very limited number of conjugated polymers have been reported so far. Here, we systematically explore a series of polythiophene derivatives, presenting different alkyl side chains lengths and orientation, and characterized by various morphologies: comparative evaluation of their performances allows highlighting the critical role played by alkyl side chains, which significantly affects the polymer/water interface capacitance. Reported results provide useful guidelines towards further development of WGOFETs and represent a step forward in the understanding of the polymer/water interface phenomena.

Recently, water-gated organic field-effect transistors (WGOFET) have been intensively studied for their application in the biological field. Surprisingly, a very limited number of conjugated polymers have been reported so far. Here, we systematically explore a series of polythiophene derivatives, presenting different alkyl side chains lengths and orientation, and characterized by various morphologies: comparative evaluation of their performances allows highlighting the critical role played by alkyl side chains, which significantly affects the polymer/water interface capacitance. Reported results provide useful guidelines towards further development of WGOFETs and represent a step forward in the understanding of the polymer/water interface phenomena.

Field-effect and capacitive properties of water-gated transistors based on polythiophene derivatives

PORRAZZO, ROSSELLA;BELLANI, SEBASTIANO;BERTARELLI, CHIARA;LANZANI, GUGLIELMO;CAIRONI, MARIO;
2015-01-01

Abstract

Recently, water-gated organic field-effect transistors (WGOFET) have been intensively studied for their application in the biological field. Surprisingly, a very limited number of conjugated polymers have been reported so far. Here, we systematically explore a series of polythiophene derivatives, presenting different alkyl side chains lengths and orientation, and characterized by various morphologies: comparative evaluation of their performances allows highlighting the critical role played by alkyl side chains, which significantly affects the polymer/water interface capacitance. Reported results provide useful guidelines towards further development of WGOFETs and represent a step forward in the understanding of the polymer/water interface phenomena.
Recently, water-gated organic field-effect transistors (WGOFET) have been intensively studied for their application in the biological field. Surprisingly, a very limited number of conjugated polymers have been reported so far. Here, we systematically explore a series of polythiophene derivatives, presenting different alkyl side chains lengths and orientation, and characterized by various morphologies: comparative evaluation of their performances allows highlighting the critical role played by alkyl side chains, which significantly affects the polymer/water interface capacitance. Reported results provide useful guidelines towards further development of WGOFETs and represent a step forward in the understanding of the polymer/water interface phenomena.
File in questo prodotto:
File Dimensione Formato  
1.4900888.pdf

accesso aperto

Descrizione: Main text
: Publisher’s version
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/871354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact