A new z-axis Lorentz force microelectromechanical systems magnetometer was designed, fabricated, and tested. The proposed device is characterized by simple design, reduced dimensions, and high efficiency. Furthermore, possible parasitic acceleration sensitivity is mechanically canceled in the proposed device. The initial design was subsequently studied through an ad hoc formulated multiphysics model used to compute the sensor dynamics; optimality of the design configuration was then obtained by means of a structural optimization approach. A wide scenario of design configurations, obtained with the proposed optimization approach, is finally discussed
An efficient earth magnetic field MEMS sensor: modeling, experimental results and optimization.
BRUGGI, MATTEO;CORIGLIANO, ALBERTO;MARIANI, STEFANO;
2015-01-01
Abstract
A new z-axis Lorentz force microelectromechanical systems magnetometer was designed, fabricated, and tested. The proposed device is characterized by simple design, reduced dimensions, and high efficiency. Furthermore, possible parasitic acceleration sensitivity is mechanically canceled in the proposed device. The initial design was subsequently studied through an ad hoc formulated multiphysics model used to compute the sensor dynamics; optimality of the design configuration was then obtained by means of a structural optimization approach. A wide scenario of design configurations, obtained with the proposed optimization approach, is finally discussedFile | Dimensione | Formato | |
---|---|---|---|
Pre-print-06910246.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
An Efficient Earth Magnetic Field MEMS Sensor_11311-871170_Corigliano.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.