In this study we demonstrate the fabrication of one-dimensional porous multilayer photonic crystals made by metal oxide nanoparticles. We show the infiltration of these porous structures with a liquid crystal via a very simple method, resulting in a red shift of the photonic band gap due to increase of the effective refractive index of the medium. Taking advantage of structure thickness of only few micrometers, we have observed a blue shift of the photonic band gap owing the non-linear response of the liquid crystals by applying a very low external electric voltage, i.e. 8 V. The experimental observation of electric voltage tuning on the transmission spectrum has been corroborated by transfer matrix method simulations, by taking into account the non-linear optical properties of the liquid crystal. In this framework, we propose how the optical properties of these structure can be accurately predicted by our simulation software in terms of diffraction efficiency, of photonic band gap position when the porous photonic crystals is doped with a liquid crystal, of modulation of the photonic band gap position (electro-optic tuning) in the presence of applied voltage. According with results carried out by the custom simulation software it is possible to control the optical proprieties of the photonics crystal in very thin structures. Furthermore, the presented device could be very interesting for applications where high sensitivity sensor and selective color tunability is needed with the use of cheap and low voltage power supplies. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Low-voltage tunable photonics devices: grove on thin porous structures containing liquid crystals

MORETTI, LUCA;SCOTOGNELLA, FRANCESCO
2013-01-01

Abstract

In this study we demonstrate the fabrication of one-dimensional porous multilayer photonic crystals made by metal oxide nanoparticles. We show the infiltration of these porous structures with a liquid crystal via a very simple method, resulting in a red shift of the photonic band gap due to increase of the effective refractive index of the medium. Taking advantage of structure thickness of only few micrometers, we have observed a blue shift of the photonic band gap owing the non-linear response of the liquid crystals by applying a very low external electric voltage, i.e. 8 V. The experimental observation of electric voltage tuning on the transmission spectrum has been corroborated by transfer matrix method simulations, by taking into account the non-linear optical properties of the liquid crystal. In this framework, we propose how the optical properties of these structure can be accurately predicted by our simulation software in terms of diffraction efficiency, of photonic band gap position when the porous photonic crystals is doped with a liquid crystal, of modulation of the photonic band gap position (electro-optic tuning) in the presence of applied voltage. According with results carried out by the custom simulation software it is possible to control the optical proprieties of the photonics crystal in very thin structures. Furthermore, the presented device could be very interesting for applications where high sensitivity sensor and selective color tunability is needed with the use of cheap and low voltage power supplies. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
2013
Liquid Crystals XVII
978-0-8194-9678-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/863936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact