This work focuses on the thermo-mechanical design of the microbalance used for the VISTA (Volatile In Situ Thermogravimetry Analyzer) sensor. VISTA has been designed to operate in situ in different space environments (asteroids, Mars, icy satellites). In this paper we focus on its application on Mars, where the expected environmental conditions are the most challenging for the thermo-mechanical design. The microbalance holding system has been designed to ensure piezoelectric crystal integrity against the high vibration levels during launch and landing and to cope with the unavoidable thermo-elastic differential displacements due to CTE and temperature differences between the microbalance elements. The crystal holding system, based on three symmetrical titanium supports, provides also the electrical connections needed for crystal actuation, microbalance heating and temperature measurement on the electrode area. On the microbalance crystal surfaces the electrodes, a micro film heater (optimized to perform thermo-gravimetric analysis up to 400 °C) and a resistive thermometer are deposited through a vacuum sputtering process. A mockup of the system has been manufactured and tested at the expected vibration levels and the thermal control effectiveness has been verified in thermo-vacuum environment.

Thermo-mechanical design and testing of a microbalance for space applications

SCACCABAROZZI, DIEGO;SAGGIN, BORTOLINO;TARABINI, MARCO;
2014-01-01

Abstract

This work focuses on the thermo-mechanical design of the microbalance used for the VISTA (Volatile In Situ Thermogravimetry Analyzer) sensor. VISTA has been designed to operate in situ in different space environments (asteroids, Mars, icy satellites). In this paper we focus on its application on Mars, where the expected environmental conditions are the most challenging for the thermo-mechanical design. The microbalance holding system has been designed to ensure piezoelectric crystal integrity against the high vibration levels during launch and landing and to cope with the unavoidable thermo-elastic differential displacements due to CTE and temperature differences between the microbalance elements. The crystal holding system, based on three symmetrical titanium supports, provides also the electrical connections needed for crystal actuation, microbalance heating and temperature measurement on the electrode area. On the microbalance crystal surfaces the electrodes, a micro film heater (optimized to perform thermo-gravimetric analysis up to 400 °C) and a resistive thermometer are deposited through a vacuum sputtering process. A mockup of the system has been manufactured and tested at the expected vibration levels and the thermal control effectiveness has been verified in thermo-vacuum environment.
2014
File in questo prodotto:
File Dimensione Formato  
Microbalancepaper.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF   Visualizza/Apri
Thermo-mechanical design and testing of a microbalance for space applications_11311-862736_Scaccabarozzi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/862736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact