Shape Memory Alloys (SMAs) are smart and functional materials, which are considered good candidates for the activation of devices for the automotive, aerospace, biomedical and mechanical systems, thanks to the shape memory effect. In this work, a study on the mechanical response of NiTi SMA snake like elements has been proposed. The production route of these elements from thin sheets, was given by laser machining followed by chemical etching. The micro-elements were characterized by means of calorimetric analysis for the definition of the theoretical operating temperatures and by means of thermo-mechanical testing for the evaluation of their functional performances. Mechanical tests has been carried out to assess the tensile behavior of martensite and austenite separately, and to evaluate the thermal hysteresis under different constant loads. Moreover, Finite Element Modeling (FEM) has been also accomplished to study the numerical evaluation of the stress field that origins by the application of the different loads in both the martensitic and austenitic phases. Copyright © 2013 by ASME.

Functional characterization of NiTi Shape Memory elements for smart micro-actuation

BIFFI, CARLO ALBERTO;PREVITALI, BARBARA;
2013-01-01

Abstract

Shape Memory Alloys (SMAs) are smart and functional materials, which are considered good candidates for the activation of devices for the automotive, aerospace, biomedical and mechanical systems, thanks to the shape memory effect. In this work, a study on the mechanical response of NiTi SMA snake like elements has been proposed. The production route of these elements from thin sheets, was given by laser machining followed by chemical etching. The micro-elements were characterized by means of calorimetric analysis for the definition of the theoretical operating temperatures and by means of thermo-mechanical testing for the evaluation of their functional performances. Mechanical tests has been carried out to assess the tensile behavior of martensite and austenite separately, and to evaluate the thermal hysteresis under different constant loads. Moreover, Finite Element Modeling (FEM) has been also accomplished to study the numerical evaluation of the stress field that origins by the application of the different loads in both the martensitic and austenitic phases. Copyright © 2013 by ASME.
2013
Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
9780791856031
Functional materials, Intelligent materials, Intelligent systems, Mechanical testing, Shape memory effect; Calorimetric analysis, Functional characterization, Functional performance, Mechanical response, Mechanical systems, Operating temperature, Thermal hysteresis, Thermo-mechanical testing; Computer simulation
File in questo prodotto:
File Dimensione Formato  
Biffi_Functional Characterization of NiTi Shape Memory Elements for Smart Micro-Actuation_2013.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri
SMASIS2013.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 505.81 kB
Formato Adobe PDF
505.81 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/855339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact