We propose a novel general approach to the problem of kriging georeferenced functional data. We extend some classical results to nonstationary random fields valued in any Hilbert space. The geometric perspective of our approach allows to deal with either unconstrained or constrained data and opens new perspectives to krige manifold valued random fields.
Kriging prediction for spatial random fields valued in a Hilbert space
MENAFOGLIO, ALESSANDRA;SECCHI, PIERCESARE
2014-01-01
Abstract
We propose a novel general approach to the problem of kriging georeferenced functional data. We extend some classical results to nonstationary random fields valued in any Hilbert space. The geometric perspective of our approach allows to deal with either unconstrained or constrained data and opens new perspectives to krige manifold valued random fields.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2014_IWFOS_MenafoglioSecchi_KrigingPredictionForSpatialRandomFieldsValuedInAHilbertSpace_rev.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.