This work presents a parametric dynamic model of a helicopter collective control inceptor that includes the biodynamics of the pilot. The biodynamic feedthrough and neuromuscular admittance of a helicopter pilot are characterized using a detailed multibody analysis of the pilot's left arm holding the inceptor as a 'virtual experiment' to produce the results required to identify the parameters of the coupled system. The goal is to develop an analytical model of the dynamics of the coupled pilot-device system and gain insight into the effect of several design parameters on the characteristics of the coupled system. The effect of device inertia, damping, stiffness and friction on the stability margins of the coupled system with respect to the collective bounce instability phenomenon are analyzed and discussed. The analytical model is verified using it in place of the detailed multibody model of the pilot's arm in the fully detailed multibody simulation of the coupled system. It is then used in linearized analysis of the complete system in support of the vehicle design.

A Pilot-Control Device Model for Helicopter Sensitivity to Collective Bounce

MASARATI, PIERANGELO;QUARANTA, GIUSEPPE
2014-01-01

Abstract

This work presents a parametric dynamic model of a helicopter collective control inceptor that includes the biodynamics of the pilot. The biodynamic feedthrough and neuromuscular admittance of a helicopter pilot are characterized using a detailed multibody analysis of the pilot's left arm holding the inceptor as a 'virtual experiment' to produce the results required to identify the parameters of the coupled system. The goal is to develop an analytical model of the dynamics of the coupled pilot-device system and gain insight into the effect of several design parameters on the characteristics of the coupled system. The effect of device inertia, damping, stiffness and friction on the stability margins of the coupled system with respect to the collective bounce instability phenomenon are analyzed and discussed. The analytical model is verified using it in place of the detailed multibody model of the pilot's arm in the fully detailed multibody simulation of the coupled system. It is then used in linearized analysis of the complete system in support of the vehicle design.
2014
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
978-0-7918-4639-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/844548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 0
social impact