The aerodynamic interaction of a stream-wise vortex impacting on a NACA 23012 oscillating airfoil was investigated using stereo particle image velocimetry. The experimental rig enabled the study of the aerodynamic effects due to the blade pitching motion in the interaction with the vortex. The experimental study focused on the light dynamic stall regime, which represents a typical condition of the retreating blade of a helicopter in forward flight. Particle image velocimetry was applied to a measurement volume close to the airfoil upper surface in order to obtain the three-dimensional interacting flow field. In particular, the experimental results show that during the airfoil downstroke motion, the vortex impact triggers the stall of the local blade section, indicating that detrimental effects on the blade performance can be introduced by perpendicular vortex interactions.
Stereo Particle Image Velocimetry Measurements of Perpendicular Blade-Vortex Interaction over an Oscillating Airfoil
ZANOTTI, ALEX;ERMACORA, MARTINO;CAMPANARDI, GABRIELE GIUSEPPE;GIBERTINI, GIUSEPPE
2014-01-01
Abstract
The aerodynamic interaction of a stream-wise vortex impacting on a NACA 23012 oscillating airfoil was investigated using stereo particle image velocimetry. The experimental rig enabled the study of the aerodynamic effects due to the blade pitching motion in the interaction with the vortex. The experimental study focused on the light dynamic stall regime, which represents a typical condition of the retreating blade of a helicopter in forward flight. Particle image velocimetry was applied to a measurement volume close to the airfoil upper surface in order to obtain the three-dimensional interacting flow field. In particular, the experimental results show that during the airfoil downstroke motion, the vortex impact triggers the stall of the local blade section, indicating that detrimental effects on the blade performance can be introduced by perpendicular vortex interactions.File | Dimensione | Formato | |
---|---|---|---|
ZANOA02-14.pdf
Accesso riservato
:
Publisher’s version
Dimensione
4.52 MB
Formato
Adobe PDF
|
4.52 MB | Adobe PDF | Visualizza/Apri |
ZANOA_OA_02-14.pdf
Open Access dal 02/10/2015
Descrizione: Paper open access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.