Remote real-time monitoring of pipelines reliability is becoming a key factor for the environmental sustainability of oil&gas industry. Multipoint Acoustic Sensing (MAS) technology makes use of multi sensors placed at discrete distances to detect Third Party Interference (TPI) and fluid leaks along the pipeline. In fact, any interaction with the pipe generates pressure waves that are guided within the fluid (gas or oil) for long distances, carrying information on the source event. Pressure propagation is mainly governed by the absorption coefficient and the sound speed. These parameters are in turn complicated functions of the frequency, the geometrical and elastic parameters of the pipe shell, the elastic parameters of the surrounding medium, and the acoustic and thermodynamic properties of the transported fluid. We have analyzed these aspects while processing acoustic data collected on crude oil and gas transportation pipelines, in different operational and flow conditions. This study describes the acquisition campaigns and the data analysis steps used for the experimental derivation of fluid properties and pipe anomalies. The results are also used for the validation of mathematical models of pressure waves propagation in fluid filled pipes. Copyright © 2013 by ASME.

Advanced pipeline vibroacoustic monitoring

BERNASCONI, GIANCARLO;DEL GIUDICE, SILVIO;
2013-01-01

Abstract

Remote real-time monitoring of pipelines reliability is becoming a key factor for the environmental sustainability of oil&gas industry. Multipoint Acoustic Sensing (MAS) technology makes use of multi sensors placed at discrete distances to detect Third Party Interference (TPI) and fluid leaks along the pipeline. In fact, any interaction with the pipe generates pressure waves that are guided within the fluid (gas or oil) for long distances, carrying information on the source event. Pressure propagation is mainly governed by the absorption coefficient and the sound speed. These parameters are in turn complicated functions of the frequency, the geometrical and elastic parameters of the pipe shell, the elastic parameters of the surrounding medium, and the acoustic and thermodynamic properties of the transported fluid. We have analyzed these aspects while processing acoustic data collected on crude oil and gas transportation pipelines, in different operational and flow conditions. This study describes the acquisition campaigns and the data analysis steps used for the experimental derivation of fluid properties and pipe anomalies. The results are also used for the validation of mathematical models of pressure waves propagation in fluid filled pipes. Copyright © 2013 by ASME.
2013
ASME 2013 Pressure Vessels and Piping Conference - Volume 5: High-Pressure Technology
9780791855690
pipeline monitoring; distributed acoustic sensing
File in questo prodotto:
File Dimensione Formato  
2013_PVP2013-97281.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/822735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 4
social impact