A Smart Grid approach to electric distribution system management needs to front uncertainties in generation and demand thus making forecasting an up-to-date area of research in electric energy systems. This works aims to propose a day-ahead load forecasting procedure for a medium voltage customer. The load forecasting is performed through the implementation of an artificial neural network (ANN). The proposed multi-layer perceptron ANN, based on backpropagation training algorithm, is able to take as inputs: loads, data concerning the type of day (e.g. weekday/holiday), time of the day and weather data (e.g. temperature, humidity). This procedure has been tested to predict the loads of a large university hospital facility located in Rome.
Artificial Neural Network Application to Load Forecasting in a Large Hospital Facility
GRILLO, SAMUELE;
2014-01-01
Abstract
A Smart Grid approach to electric distribution system management needs to front uncertainties in generation and demand thus making forecasting an up-to-date area of research in electric energy systems. This works aims to propose a day-ahead load forecasting procedure for a medium voltage customer. The load forecasting is performed through the implementation of an artificial neural network (ANN). The proposed multi-layer perceptron ANN, based on backpropagation training algorithm, is able to take as inputs: loads, data concerning the type of day (e.g. weekday/holiday), time of the day and weather data (e.g. temperature, humidity). This procedure has been tested to predict the loads of a large university hospital facility located in Rome.File | Dimensione | Formato | |
---|---|---|---|
PMAPS_14.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.