This paper presents a model-based control technique to provide the contribution of wind power generators to primary frequency regulation in electric power systems. Models of individual wind power generators and wind farm (WF) as a whole are presented and the proposed control strategy is detailed. It consists of a central controller, a central Kalman filter (KF), and some local KFs, one for each wind turbine. The central controller is disabled in normal operation conditions and its task is to set the power reference for each wind turbine, overwriting the local reference, when a disturbance occurs. Central KF is in charge of estimating the external load variation, while each local KF estimates wind speed and the wind turbine’s dynamical state. The key feature of this approach is that each wind turbine can react to grid disturbances in a different way, which depends on wind speed as seen by the wind turbine itself and by its dynamical conditions. Real wind data and a large WF connected to the grid in a dedicated simulation environment have been used to test the effectiveness of the proposed control strategy.

An Optimal Model-Based Control Technique to Improve Wind Farm Participation to Frequency Regulation

GRILLO, SAMUELE;
2015

Abstract

This paper presents a model-based control technique to provide the contribution of wind power generators to primary frequency regulation in electric power systems. Models of individual wind power generators and wind farm (WF) as a whole are presented and the proposed control strategy is detailed. It consists of a central controller, a central Kalman filter (KF), and some local KFs, one for each wind turbine. The central controller is disabled in normal operation conditions and its task is to set the power reference for each wind turbine, overwriting the local reference, when a disturbance occurs. Central KF is in charge of estimating the external load variation, while each local KF estimates wind speed and the wind turbine’s dynamical state. The key feature of this approach is that each wind turbine can react to grid disturbances in a different way, which depends on wind speed as seen by the wind turbine itself and by its dynamical conditions. Real wind data and a large WF connected to the grid in a dedicated simulation environment have been used to test the effectiveness of the proposed control strategy.
ancillary services, inertial response, model predictive control, optimal control, primary frequency control, rotational kinetic energy, wind power plants, elettrici
File in questo prodotto:
File Dimensione Formato  
IEEE_J_TSTE_2015.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri
An Optimal Model-Based Control Technique_11311-818320_Grillo.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/818320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 40
social impact