The onset of two-dimensional instabilities in the flow past two side-by-side circular cylinders is numerically investigated in the ranges 0.1 <= 6 <= 3 and Re < 100, with g being the non-dimensional gap spacing between the surfaces of the two cylinders and Re the Reynolds number. A comprehensive, global stability analysis of the symmetric base flow is carried out, indicating that three harmonic modes and one steady antisymmetric mode become unstable at different values of g and Re. These modes are known to promote distinct flow regimes at increasing values of g: single bluff-body, asymmetric, in-phase and antiphase synchronized vortex shedding. For each mode, the inherent structural sensitivity is examined in order to identify the core region of the related instability mechanism. In addition, by exploiting the structural sensitivity analysis to base flow modifications, a passive control strategy is proposed for the simultaneous suppression of the two synchronized shedding modes using two small secondary cylinders. Its effectiveness is then validated a posteriori by means of direct numerical simulations.
First Instability and Structural Sensitivity of the Flow Past Two Side-by-Side Cylinders
CARINI, MARCO;AUTERI, FRANCO
2014-01-01
Abstract
The onset of two-dimensional instabilities in the flow past two side-by-side circular cylinders is numerically investigated in the ranges 0.1 <= 6 <= 3 and Re < 100, with g being the non-dimensional gap spacing between the surfaces of the two cylinders and Re the Reynolds number. A comprehensive, global stability analysis of the symmetric base flow is carried out, indicating that three harmonic modes and one steady antisymmetric mode become unstable at different values of g and Re. These modes are known to promote distinct flow regimes at increasing values of g: single bluff-body, asymmetric, in-phase and antiphase synchronized vortex shedding. For each mode, the inherent structural sensitivity is examined in order to identify the core region of the related instability mechanism. In addition, by exploiting the structural sensitivity analysis to base flow modifications, a passive control strategy is proposed for the simultaneous suppression of the two synchronized shedding modes using two small secondary cylinders. Its effectiveness is then validated a posteriori by means of direct numerical simulations.File | Dimensione | Formato | |
---|---|---|---|
CARIM02-14.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.37 MB
Formato
Adobe PDF
|
3.37 MB | Adobe PDF | Visualizza/Apri |
CARIM_OA_-14.pdf
Open Access dal 26/12/2014
Descrizione: Paper open access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.