Carbon nanotube (CNT) foams have unmatched energy absorption properties derived from their complex hierarchical structure. The control of the micro-scale geometry of these foams allows tuning their behavior to specific application-driven needs. Geometrical structures in CNT foams are obtained by synthesizing CNTs on substrates patterned with different growth templates: circles, lines and concentric rings. To study the effects of the microstructural geometry on the bulk mechanical response of the foams, the samples are tested under cyclic quasi-static compressive deformation (up to 50% strain). The geometry of the patterns plays a fundamental role on the samples' macroscopic energy absorption capability, maximum stress, and strain recovery. Patterned CNT structures demonstrated mechanical properties comparable or improved over non-patterned, bulk CNT foams, but with much lower density. Quasi-static compressive tests performed on different patterned structures with the same effective density (ρ = 0.02 g cm−3) exhibit considerably different responses. For example, the stress reached by foams patterned in concentric rings is ≈15 times higher than that observed for pillars and lines. The results show how the mechanical response of CNT foams can be tailored by varying the CNT microstructural architecture.
Geometry-Induced Mechanical Properties of Carbon Nanotube Foams
LATTANZI, LUDOVICA;DE NARDO, LUIGI;
2014-01-01
Abstract
Carbon nanotube (CNT) foams have unmatched energy absorption properties derived from their complex hierarchical structure. The control of the micro-scale geometry of these foams allows tuning their behavior to specific application-driven needs. Geometrical structures in CNT foams are obtained by synthesizing CNTs on substrates patterned with different growth templates: circles, lines and concentric rings. To study the effects of the microstructural geometry on the bulk mechanical response of the foams, the samples are tested under cyclic quasi-static compressive deformation (up to 50% strain). The geometry of the patterns plays a fundamental role on the samples' macroscopic energy absorption capability, maximum stress, and strain recovery. Patterned CNT structures demonstrated mechanical properties comparable or improved over non-patterned, bulk CNT foams, but with much lower density. Quasi-static compressive tests performed on different patterned structures with the same effective density (ρ = 0.02 g cm−3) exhibit considerably different responses. For example, the stress reached by foams patterned in concentric rings is ≈15 times higher than that observed for pillars and lines. The results show how the mechanical response of CNT foams can be tailored by varying the CNT microstructural architecture.File | Dimensione | Formato | |
---|---|---|---|
Lattanzi_et_al-2014-Advanced_Engineering_Materials.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
Geometry-Induced Mechanical Properties of Carbon Nanotube Foam_11311-777918_De Nardo.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.