Our activity is focused on the study of the kinetic of the Pt-Ba/γ-Al2O3 catalyst used in the Lean-NOx-Traps to store NOx as adsorbed nitrites and nitrates, and to reduce them to nitrogen. Kinetically relevant data have been collected by the Laboratoire Catalyse et Spectrochimie (ENSICAEN, France), using a spectroscopic reactor-cell, and on the basis of the collected data, a kinetic model has been developed, using as experimental responses the dynamic evolution of both the gas phase and the adsorbed species. In this work a reactive Computational Fluid-Dynamic (CFD)-based modeling approach is proposed for the first time, in order to keep into account the actual reactor-cell geometry (modeled as ideal PFR for the estimate of the kinetic parameters), and to obtain further information of the space-time evolution of the reactive system. For instance, a sensitivity analysis on the geometry of the system is proposed. Consequently, a new simulation tool, named CATalytic Post Processor, is here presented. CAT-PP is able to acquire the flow/velocity field obtained by the commercial code ANSYS Fluent and to solve the transport equations containing the kinetic scheme.

Development of a kinetic model of lean-nox-trap and validation through a reactive cfd aprroach

MANENTI, FLAVIO;VISCONTI, CARLO GIORGIO;PIERUCCI, SAURO;LIETTI, LUCA;FORZATTI, PIO
2013-01-01

Abstract

Our activity is focused on the study of the kinetic of the Pt-Ba/γ-Al2O3 catalyst used in the Lean-NOx-Traps to store NOx as adsorbed nitrites and nitrates, and to reduce them to nitrogen. Kinetically relevant data have been collected by the Laboratoire Catalyse et Spectrochimie (ENSICAEN, France), using a spectroscopic reactor-cell, and on the basis of the collected data, a kinetic model has been developed, using as experimental responses the dynamic evolution of both the gas phase and the adsorbed species. In this work a reactive Computational Fluid-Dynamic (CFD)-based modeling approach is proposed for the first time, in order to keep into account the actual reactor-cell geometry (modeled as ideal PFR for the estimate of the kinetic parameters), and to obtain further information of the space-time evolution of the reactive system. For instance, a sensitivity analysis on the geometry of the system is proposed. Consequently, a new simulation tool, named CATalytic Post Processor, is here presented. CAT-PP is able to acquire the flow/velocity field obtained by the commercial code ANSYS Fluent and to solve the transport equations containing the kinetic scheme.
2013
Chemical Engineering Transactions
9788895608556
File in questo prodotto:
File Dimensione Formato  
015.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/766053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact