In the fib Model Code for Concrete Structures 2010, fibre-reinforced concrete (FRC) is recognized as a new material for structures. This introduction will favour forthcoming structural applications because the need of adopting new design concepts and the lack of international building codes have significantly limited its use up to now. In the code, considerable effort has been devoted to introducing a material classification to standardize performance-based production and stimulate an open market for every kind of fibre, favouring the rise of a new technological player: the composite producer. Starting from standard classification, the simple constitutive models introduced allow the designer to identify effective constitutive laws for design, trying to take into account the major contribution in terms of performance and providing good orientation for structural uses. Basic new concepts such as structural characteristic length and new factors related to fibre distribution and structural redistribution benefits are taken into account. A few examples of structural design starting from the constitutive laws identified are briefly shown. FRC can be regarded as a special concrete characterized by a certain toughness after cracking. For this reason, the most important constitutive law introduced is the stress-crack opening response in uniaxial tension. A wide discussion of the constitutive models introduced to describe this behaviour, which controls all the main contributions of fibres for a prevailing mode I crack propagation, is proposed. The validity of the models is discussed with reference to ordinary cross-sections as well as thin-walled elements by adopting plane section or finite element models.

Fibre-reinforced concrete in fib Model Code 2010: principles, models and test validation

DI PRISCO, MARCO;COLOMBO, MATTEO;DOZIO, DANIELE
2013-01-01

Abstract

In the fib Model Code for Concrete Structures 2010, fibre-reinforced concrete (FRC) is recognized as a new material for structures. This introduction will favour forthcoming structural applications because the need of adopting new design concepts and the lack of international building codes have significantly limited its use up to now. In the code, considerable effort has been devoted to introducing a material classification to standardize performance-based production and stimulate an open market for every kind of fibre, favouring the rise of a new technological player: the composite producer. Starting from standard classification, the simple constitutive models introduced allow the designer to identify effective constitutive laws for design, trying to take into account the major contribution in terms of performance and providing good orientation for structural uses. Basic new concepts such as structural characteristic length and new factors related to fibre distribution and structural redistribution benefits are taken into account. A few examples of structural design starting from the constitutive laws identified are briefly shown. FRC can be regarded as a special concrete characterized by a certain toughness after cracking. For this reason, the most important constitutive law introduced is the stress-crack opening response in uniaxial tension. A wide discussion of the constitutive models introduced to describe this behaviour, which controls all the main contributions of fibres for a prevailing mode I crack propagation, is proposed. The validity of the models is discussed with reference to ordinary cross-sections as well as thin-walled elements by adopting plane section or finite element models.
fibre-reinforced concrete; constitutive equations; identification; modelling; structural characteristic length; structural behaviour; redundancy; structural design
File in questo prodotto:
File Dimensione Formato  
structural concrete.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/763731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 155
  • ???jsp.display-item.citation.isi??? 111
social impact