When dealing with motion blur, there is an inevitable tradeoff between the amount of blur and the amount of noise in the acquired images. The effectiveness of any restoration algorithm typically depends on these amounts, and it is difficult to find their best balance in order to ease the restoration task. To face this problem, we provide a methodology for deriving a statistical model of the restoration performance of a given deblurring algorithm in case of arbitrary motion. Each restoration-error model allows us to investigate how the restoration performance of the corresponding algorithm varies as the blur due to motion develops. Our modeling treats the point-spread-function trajectories as random processes and, following a Monte Carlo approach, expresses the restoration performance as the expectation of the restoration error conditioned on some motion-randomness descriptors and on the exposure time. This allows us to coherently encompass various imaging scenarios, including camera shake and uniform (rectilinear) motion, and, for each of these, identify the specific exposure time that maximizes the image quality after deblurring.

Modeling the Performance of Image Restoration From Motion Blur

BORACCHI, GIACOMO;
2012-01-01

Abstract

When dealing with motion blur, there is an inevitable tradeoff between the amount of blur and the amount of noise in the acquired images. The effectiveness of any restoration algorithm typically depends on these amounts, and it is difficult to find their best balance in order to ease the restoration task. To face this problem, we provide a methodology for deriving a statistical model of the restoration performance of a given deblurring algorithm in case of arbitrary motion. Each restoration-error model allows us to investigate how the restoration performance of the corresponding algorithm varies as the blur due to motion develops. Our modeling treats the point-spread-function trajectories as random processes and, following a Monte Carlo approach, expresses the restoration performance as the expectation of the restoration error conditioned on some motion-randomness descriptors and on the exposure time. This allows us to coherently encompass various imaging scenarios, including camera shake and uniform (rectilinear) motion, and, for each of these, identify the specific exposure time that maximizes the image quality after deblurring.
2012
Motion Blur; Camera Shake; Deconvolution; Image Deblurring; Imaging System Modeling.
File in questo prodotto:
File Dimensione Formato  
2012_03_Boracchi-Foi-TIP_Modeling.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 6.99 MB
Formato Adobe PDF
6.99 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/763316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 93
social impact