This paper is concerned with nonlinear analysis of frames composed of softening materials. The previously proposed dissipated energy maximization approach is extended to determine non-holonomic solution of such frames. The adopted assumptions are: linear kinematics, lumped plasticity with softening behavior, piecewise-linear yield functions, associate flow rule and isotropic evolution with a three phase linear softening rule. The approach is based on a mathematical programming formulation. The solution procedure is discussed and presented in a comprehensive flowchart. It is shown that this method has the ability of solving and tracing path dependent problems and detecting any possible bifurcation.

Elastoplastic analysis of frames composed of softening materials by restricted basis linear programming

COCCHETTI, GIUSEPPE
2014-01-01

Abstract

This paper is concerned with nonlinear analysis of frames composed of softening materials. The previously proposed dissipated energy maximization approach is extended to determine non-holonomic solution of such frames. The adopted assumptions are: linear kinematics, lumped plasticity with softening behavior, piecewise-linear yield functions, associate flow rule and isotropic evolution with a three phase linear softening rule. The approach is based on a mathematical programming formulation. The solution procedure is discussed and presented in a comprehensive flowchart. It is shown that this method has the ability of solving and tracing path dependent problems and detecting any possible bifurcation.
2014
Nonlinear analysis; Softening joints; Piecewise-linear model; Mathematical programming
File in questo prodotto:
File Dimensione Formato  
Mahini-Moharrami-Cocchetti-COMP.STR-2014(131).pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri
Elastoplastic analysis of frames composed_11311-762082_Cocchetti.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/762082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact