This paper aims at extending the well-known critical state concept, associated with quasi-static conditions, by accounting for the role played by the strain rate when focusing on the steady, simple shear flow of a dry assembly of identical, inelastic, soft spheres. An additional state variable for the system, the granular temperature, is accounted for. The granular temperature is related to the particle velocity fluctuations and measures the agitation of the system. This state variable, as is in the context of kinetic theories of granular gases, is assumed to govern the response of the material at large strain rates and low concentrations. The stresses of the system are associated with enduring, frictional contacts among particles involved in force chains and nearly instantaneous collisions. When the first mechanism prevails, the material behaves like a solid, and constitutive models of soil mechanics hold, whereas when inelastic collisions dominate, the material flows like a granular gas, and kinetic theories apply. Considering a pressure-imposed flow, at large values of the normal stress and small values of the shear rate, the theory predicts a nonmonotonic shear rate dependence of the stress ratio at the steady state, which is likely to govern the evolution of landslides.

From solid to granular gases: the steady state for granular materials

VESCOVI, DALILA;DI PRISCO, CLAUDIO GIULIO;BERZI, DIEGO
2013-01-01

Abstract

This paper aims at extending the well-known critical state concept, associated with quasi-static conditions, by accounting for the role played by the strain rate when focusing on the steady, simple shear flow of a dry assembly of identical, inelastic, soft spheres. An additional state variable for the system, the granular temperature, is accounted for. The granular temperature is related to the particle velocity fluctuations and measures the agitation of the system. This state variable, as is in the context of kinetic theories of granular gases, is assumed to govern the response of the material at large strain rates and low concentrations. The stresses of the system are associated with enduring, frictional contacts among particles involved in force chains and nearly instantaneous collisions. When the first mechanism prevails, the material behaves like a solid, and constitutive models of soil mechanics hold, whereas when inelastic collisions dominate, the material flows like a granular gas, and kinetic theories apply. Considering a pressure-imposed flow, at large values of the normal stress and small values of the shear rate, the theory predicts a nonmonotonic shear rate dependence of the stress ratio at the steady state, which is likely to govern the evolution of landslides.
2013
constitutive modeling; granular flows; steady state; theoretical analysis; simple shear
File in questo prodotto:
File Dimensione Formato  
Post_Print_Vescovi, di Prisco, Berzi - 2013.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 636.14 kB
Formato Adobe PDF
636.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/760742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 20
social impact