We present an all-solution processed multilayered structure completely obtained via spin-coating, which can be used to study and optimize the phenomenon of metal-enhanced fluorescence. Indeed, the electromagnetic interactions occurring between fluorescent probes and localized surface plasmons typical of metal nanoparticles (NPs), which influence the fluorescence quantum yield, are strongly dependent on the nanoparticle/molecule distance. The platform proposed here offers unique advantages in terms of processability, allowing a fine-tuning of such a distance in a single deposition step. Fluorescence versus fluorophore/AuNP spacing curves are shown for two organic systems, namely, a perylene-based dye dispersed in a polymer matrix and a polyconjugated polymer (poly(3-hexylthiophene)), interacting with a nanostructured gold thin film. In both cases, optimal distances and enhancement factors have been measured.

Solution Processed, Versatile Multilayered Structures for the Generation of Metal-Enhanced Fluorescence

CANESI, ELEONORA VALERIA;KARNAM, LOHITH;LUCOTTI, ANDREA;BERTARELLI, CHIARA;DEL ZOPPO, MIRELLA ELVIRA ANGELA
2013-01-01

Abstract

We present an all-solution processed multilayered structure completely obtained via spin-coating, which can be used to study and optimize the phenomenon of metal-enhanced fluorescence. Indeed, the electromagnetic interactions occurring between fluorescent probes and localized surface plasmons typical of metal nanoparticles (NPs), which influence the fluorescence quantum yield, are strongly dependent on the nanoparticle/molecule distance. The platform proposed here offers unique advantages in terms of processability, allowing a fine-tuning of such a distance in a single deposition step. Fluorescence versus fluorophore/AuNP spacing curves are shown for two organic systems, namely, a perylene-based dye dispersed in a polymer matrix and a polyconjugated polymer (poly(3-hexylthiophene)), interacting with a nanostructured gold thin film. In both cases, optimal distances and enhancement factors have been measured.
2013
File in questo prodotto:
File Dimensione Formato  
MEF2013.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/759371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact