The possibility of using optical vortices with different values of topological charge l, and hence with different values of the orbital angular momentum (OAM), for mode-division multiplexing in optical fibres is here investigated. Two OAM modes with l equal to 0 and 1, respectively, are multiplexed in a few-mode fibre and then demultiplexed after a fibre propagation of 200 m. Such modes are spatially separated at the two output ports of a Mach–Zehnder interferometer with mutually 90°-rotated Dove prisms in the two arms. It is also shown how to generalize this demultiplexing scheme, which is all-optical, passive and in principle without splitting losses, in order to deal with a higher number of vortices propagating in the fibre. Therefore the proposed mode-division multiplexing technique based on OAM modes is very promising for increasing the capacity of fibre-optic transmission systems in an energy-saving efficient way, without the high power consumption of modal demultiplexing exploiting real-time electronic post-processing.
Mode-division multiplexing in fibre-optic communications based on orbital angular momentum
BOFFI, PIERPAOLO;MARTELLI, PAOLO;GATTO, ALBERTO;MARTINELLI, MARIO
2013-01-01
Abstract
The possibility of using optical vortices with different values of topological charge l, and hence with different values of the orbital angular momentum (OAM), for mode-division multiplexing in optical fibres is here investigated. Two OAM modes with l equal to 0 and 1, respectively, are multiplexed in a few-mode fibre and then demultiplexed after a fibre propagation of 200 m. Such modes are spatially separated at the two output ports of a Mach–Zehnder interferometer with mutually 90°-rotated Dove prisms in the two arms. It is also shown how to generalize this demultiplexing scheme, which is all-optical, passive and in principle without splitting losses, in order to deal with a higher number of vortices propagating in the fibre. Therefore the proposed mode-division multiplexing technique based on OAM modes is very promising for increasing the capacity of fibre-optic transmission systems in an energy-saving efficient way, without the high power consumption of modal demultiplexing exploiting real-time electronic post-processing.File | Dimensione | Formato | |
---|---|---|---|
2040-8986_15_7_075403.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
410.74 kB
Formato
Adobe PDF
|
410.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.