Extraction, purification, and gel preparation of Aloe Vera pectin and the evaluation of the biocompatibility of the pectin gels were studied, considering as end use as implantable materials for regenerative medicine. A. Vera was chosen as source of pectin, as this pectin was described to possess high molecular weight and a low degree of esterification. As the properties of pectins are strictly dependent upon the extraction methods in combination with the natural source, the extraction method was modified in order to optimize the yield of the final product, its purity, the duration of the process and the selection of non-toxic chemical reagents. Changing the experimental conditions resulted in four different extraction processes and products with different physical and chemical characteristics. The optimal extraction resulted to be the process: with enzymatic deactivation by microwave and the use of sodium citrate as chelating agent the molecular weight of the pectin extracted was estimated to be 118 kDa and the 2.93% esterification degree. Cytocompatibility of pectin gels, prepared by ionotropic gelation, showing an improved cell adhesion if compared to commercial pectin. The results suggest that the extracted A. Vera pectins possess interesting properties to be exploited for the production of mechanically stable gels by ionotropic gelation and high rhamnose content matrices for application in regenerative medicine

Pectins from Aloe Vera: Extraction and production of gels for regenerative medicine

GENTILINI, ROBERTA;BOZZINI, SABRINA;MUNARIN, FABIOLA;PETRINI, PAOLA;TANZI, MARIA CRISTINA
2014

Abstract

Extraction, purification, and gel preparation of Aloe Vera pectin and the evaluation of the biocompatibility of the pectin gels were studied, considering as end use as implantable materials for regenerative medicine. A. Vera was chosen as source of pectin, as this pectin was described to possess high molecular weight and a low degree of esterification. As the properties of pectins are strictly dependent upon the extraction methods in combination with the natural source, the extraction method was modified in order to optimize the yield of the final product, its purity, the duration of the process and the selection of non-toxic chemical reagents. Changing the experimental conditions resulted in four different extraction processes and products with different physical and chemical characteristics. The optimal extraction resulted to be the process: with enzymatic deactivation by microwave and the use of sodium citrate as chelating agent the molecular weight of the pectin extracted was estimated to be 118 kDa and the 2.93% esterification degree. Cytocompatibility of pectin gels, prepared by ionotropic gelation, showing an improved cell adhesion if compared to commercial pectin. The results suggest that the extracted A. Vera pectins possess interesting properties to be exploited for the production of mechanically stable gels by ionotropic gelation and high rhamnose content matrices for application in regenerative medicine
biomaterials; biosynthesis of polymers; gels; polyelectrolytes
File in questo prodotto:
File Dimensione Formato  
Pectins from Aloe Vera Extraction and Production of Gels for Regenerative Medicine.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 724.56 kB
Formato Adobe PDF
724.56 kB Adobe PDF   Visualizza/Apri
Pectins from Aloe Vera Extraction and Production_11311-759300_Gentilini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 670.13 kB
Formato Adobe PDF
670.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/759300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact