Cold spray is a coating process in which bonding is obtained when the impact velocity of small particles exceeds a critical value called critical velocity (CV) but it is less than an upper limit beyond which erosion happens. The success of the cold spray process mainly depends on the correct choice of the process velocity which should be set to be between CV and erosion velocity (EV), that are influenced by many parameters. This justifies the interest of many researchers to define models for the CV assessments. In the present work, we propose a new model, combination of numerical and analytical solutions, to calculate not only the CV but also EV. Compared with previous works, porosity of particles and adherence phenomena between particle and the substrate have been taken into account as a novelty. Results of the proposed approach have been compared with experimental data and good agreement was found. Finally, based on the procedure results, a representative equation was established for calculating critical and erosion velocities as a function of particle porosity, diameter and temperature for Cu and stainless steel 316L particles.
A hybrid approach to determine critical and erosion velocities in the cold spray process
MORIDI, ATIEH;HASSANI GANGARAJ, SEYYED MOSTAFA;GUAGLIANO, MARIO
2013-01-01
Abstract
Cold spray is a coating process in which bonding is obtained when the impact velocity of small particles exceeds a critical value called critical velocity (CV) but it is less than an upper limit beyond which erosion happens. The success of the cold spray process mainly depends on the correct choice of the process velocity which should be set to be between CV and erosion velocity (EV), that are influenced by many parameters. This justifies the interest of many researchers to define models for the CV assessments. In the present work, we propose a new model, combination of numerical and analytical solutions, to calculate not only the CV but also EV. Compared with previous works, porosity of particles and adherence phenomena between particle and the substrate have been taken into account as a novelty. Results of the proposed approach have been compared with experimental data and good agreement was found. Finally, based on the procedure results, a representative equation was established for calculating critical and erosion velocities as a function of particle porosity, diameter and temperature for Cu and stainless steel 316L particles.File | Dimensione | Formato | |
---|---|---|---|
APSCUS_ATIEH_2013.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
495.96 kB
Formato
Adobe PDF
|
495.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.