This paper describes an original nonlinear phase-domain macromodel of Injection-Locked Frequency Dividers which are driven by a nonlinear input device that produces heavy harmonic distortion. These non-harmonic frequency dividers can provide wide lock ranges, however their analysis is complicated by the strong nonlinear behavior for which the hypothesis of weak injection does not apply. The proposed approach consists in adopting a nonlinear model for the input section of the divider and in combining it with a Perturbation-Projection Vector-based macromodel for the linear-time-varying section of the oscillator. The proposed macromodel is employed to predict the synchronization regions of an ILFD driven by several types of injected waveforms. In addition, closed-form expressions for the output phase-noise spectrum are also provided.

Nonlinear Phase-Domain Macromodeling of Injection-Locked Frequency Dividers

MAFFEZZONI, PAOLO
2013-01-01

Abstract

This paper describes an original nonlinear phase-domain macromodel of Injection-Locked Frequency Dividers which are driven by a nonlinear input device that produces heavy harmonic distortion. These non-harmonic frequency dividers can provide wide lock ranges, however their analysis is complicated by the strong nonlinear behavior for which the hypothesis of weak injection does not apply. The proposed approach consists in adopting a nonlinear model for the input section of the divider and in combining it with a Perturbation-Projection Vector-based macromodel for the linear-time-varying section of the oscillator. The proposed macromodel is employed to predict the synchronization regions of an ILFD driven by several types of injected waveforms. In addition, closed-form expressions for the output phase-noise spectrum are also provided.
2013
sezele
File in questo prodotto:
File Dimensione Formato  
TCAS_2013_06502271.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/758997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact