Networks-on-Chip (NoCs) are a key component for the new many-core architectures, from the performance and reliability stand-points. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stress-migration. Process variation makes harder the scenario, decreasing device lifetime and performance predictability during chip fabrication. This paper presents a novel cooperative sensor-wise methodology to reduce the NBTI degradation in the network on-chip (NoC) virtual channel (VC) buffers, considering process variation effects as well. The changes introduced to the reference NoC model exhibit an area overhead below 4%. Experimental validation is obtained using a cycle accurate simulator considering both real and synthetic traffic patterns. We compare our methodology to the best sensor-less round-robin approach used as reference model. The proposed sensor-wise strategy achieves up to 26.6% and 18.9% activity factor improvement over the reference policy on synthetic and real traffic patterns respectively. Moreover a net NBTI Vth saving up to 54.2% is shown against the baseline NoC that does not account for NBTI.

Sensor-wise methodology to face NBTI stress of NoC buffers

D. Zoni;W. Fornaciari
2013-01-01

Abstract

Networks-on-Chip (NoCs) are a key component for the new many-core architectures, from the performance and reliability stand-points. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stress-migration. Process variation makes harder the scenario, decreasing device lifetime and performance predictability during chip fabrication. This paper presents a novel cooperative sensor-wise methodology to reduce the NBTI degradation in the network on-chip (NoC) virtual channel (VC) buffers, considering process variation effects as well. The changes introduced to the reference NoC model exhibit an area overhead below 4%. Experimental validation is obtained using a cycle accurate simulator considering both real and synthetic traffic patterns. We compare our methodology to the best sensor-less round-robin approach used as reference model. The proposed sensor-wise strategy achieves up to 26.6% and 18.9% activity factor improvement over the reference policy on synthetic and real traffic patterns respectively. Moreover a net NBTI Vth saving up to 54.2% is shown against the baseline NoC that does not account for NBTI.
2013
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
978-1-4673-5071-6
Noc; simulation; Thermal analysis
File in questo prodotto:
File Dimensione Formato  
date_2013_p1038.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 362.68 kB
Formato Adobe PDF
362.68 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/758866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact