The present work describes a method for the structural optimization of wind turbine rotor blades for given prescribed aerodynamic shape. The proposed approach operates at various description levels producing cost-minimizing solutions that satisfy desired design constraints at the finest modeling level. At first, a "coarse"-level constrained design optimization is performed by using a 1D spatial geometrically exact beam model for aero-servo-elastic multibody analysis and load calculation, integrated with a 2D FEM cross sectional model for stress/strain analysis, and the evaluation of the 1D model fully-populated cross sectional stiffness matrices. Next, a "fine"-level 3D FEM model is used for the refinement of the coarse-level solution. Improved results obtained at the level of the 3D model are utilized at the following coarse-level iteration through a heuristic modification of the design constraints. In addition, a buckling analysis is performed at the fine description level, which in turn affects the nonstructural blade mass. The updated constraint bounds and mass make their effects felt at the next coarse-level constrained design optimization, thereby closing the loop between the coarse and fine description levels. The multilevel optimization procedure is implemented in a computer program and it is demonstrated on the design of a multi-MW horizontal axis wind turbine rotor blade.

Structural Optimization of Wind Turbine Rotor Blades by Multilevel Sectional/Multibody/3D-FEM Analysis

BOTTASSO, CARLO LUIGI;CAMPAGNOLO, FILIPPO;CROCE, ALESSANDRO;GUALDONI, FEDERICO;
2014-01-01

Abstract

The present work describes a method for the structural optimization of wind turbine rotor blades for given prescribed aerodynamic shape. The proposed approach operates at various description levels producing cost-minimizing solutions that satisfy desired design constraints at the finest modeling level. At first, a "coarse"-level constrained design optimization is performed by using a 1D spatial geometrically exact beam model for aero-servo-elastic multibody analysis and load calculation, integrated with a 2D FEM cross sectional model for stress/strain analysis, and the evaluation of the 1D model fully-populated cross sectional stiffness matrices. Next, a "fine"-level 3D FEM model is used for the refinement of the coarse-level solution. Improved results obtained at the level of the 3D model are utilized at the following coarse-level iteration through a heuristic modification of the design constraints. In addition, a buckling analysis is performed at the fine description level, which in turn affects the nonstructural blade mass. The updated constraint bounds and mass make their effects felt at the next coarse-level constrained design optimization, thereby closing the loop between the coarse and fine description levels. The multilevel optimization procedure is implemented in a computer program and it is demonstrated on the design of a multi-MW horizontal axis wind turbine rotor blade.
2014
Aero-servo-elasticity, Blade design, CAD modeling, FE analysis, Multibody dynamics, Multidisciplinary optimization, Wind turbine
File in questo prodotto:
File Dimensione Formato  
BOTTC09-14.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri
BOTTC_OA_09-14.pdf

Open Access dal 02/02/2015

Descrizione: Paper
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 17.95 MB
Formato Adobe PDF
17.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/754869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 40
social impact