In this paper we investigate the minimum number of colors required for a proper edge coloring of a finite, undirected, regular graph G in which no two adjacent vertices are incident to edges colored with the same set of colors. In particular, we study this parameter in relation to the direct product of G by a path or a cycle.

Adjacent Vertex Distinguishing Edge Colorings of the Direct Product of a Regular Graph by a Path or a Cycle

LASTARIA, FEDERICO GIAMPIERO;ZAGAGLIA, NORMA
2011-01-01

Abstract

In this paper we investigate the minimum number of colors required for a proper edge coloring of a finite, undirected, regular graph G in which no two adjacent vertices are incident to edges colored with the same set of colors. In particular, we study this parameter in relation to the direct product of G by a path or a cycle.
Adjacent vertex distinguishing edge coloring; Chromatic index; Direct product; Matching
File in questo prodotto:
File Dimensione Formato  
FRIGL01-11.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 103.9 kB
Formato Adobe PDF
103.9 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/746574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact