The modeling of solar radiation for forecasting its availability is a key tool for managing photovoltaic (PV) plants and, hence, is of primary importance for energy production in a smart grid scenario. However, the variability of the weather phenomena is an unavoidable obstacle in the prediction of the energy produced by the solar radiation conversion. The use of the data collected in the past can be useful to capture the daily and seasonal variability, while measurement of the recent past can be exploited to provide a short term prediction. It is well known that a good measurement of the solar radiation requires not only a high class radiometer but even a correct management of the instrument. In order to reduce the cost related to the management of the monitoring apparatus, a solution could be to evaluate the PV plant performance using data collected by public weather station installed near the plant. In this paper, two computational intelligence models are challenged; two different ground global horizontal radiation dataset have been used: the first one is based on the data collected by a public weather station located in a site different to that one of the plant, the second one, used to validate the results, is based on data collected by a local station.

Computational intelligence models for solar radiation prediction

CRISTALDI, LOREDANA;FAIFER, MARCO
2013-01-01

Abstract

The modeling of solar radiation for forecasting its availability is a key tool for managing photovoltaic (PV) plants and, hence, is of primary importance for energy production in a smart grid scenario. However, the variability of the weather phenomena is an unavoidable obstacle in the prediction of the energy produced by the solar radiation conversion. The use of the data collected in the past can be useful to capture the daily and seasonal variability, while measurement of the recent past can be exploited to provide a short term prediction. It is well known that a good measurement of the solar radiation requires not only a high class radiometer but even a correct management of the instrument. In order to reduce the cost related to the management of the monitoring apparatus, a solution could be to evaluate the PV plant performance using data collected by public weather station installed near the plant. In this paper, two computational intelligence models are challenged; two different ground global horizontal radiation dataset have been used: the first one is based on the data collected by a public weather station located in a site different to that one of the plant, the second one, used to validate the results, is based on data collected by a local station.
2013
2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
9781467346214
9781467346238
ELETTRICI
File in questo prodotto:
File Dimensione Formato  
I2MTC13_comp-intel.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/739969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact