In this paper we present Ant Colony System for Traffic Assignment (ACS-TA) for the solution of deterministic and stochastic user equilibria (DUE and SUE, respectively) problems. DUE and SUE are two well known transportation problems where the transportation demand has to be assigned to an underlying network (supply in transportation terminology) according to single user satisfaction rather than aiming at some global optimum. ACS-TA turns the classic ACS meta-heuristic for discrete optimization into a technique for equilibrium computation. ACS-TA can be easily adapted to take into account all aspects characterizing the traffic assignment problem: multiple origin-destination pairs, link congestion, non-separable cost link functions, elasticity of demand, multiple classes of demand and different user cost models including stochastic cost perception. Applications to different networks, including a non-separable costs case study and the standard Sioux Falls benchmark, are reported. Results show good performance and wider applicability with respect to conventional approaches especially for stochastic user equilibrium computation.

An Ant colony system for transport user equilibrium analysis in congested networks

MATTEUCCI, MATTEO;MUSSONE, LORENZO
2013-01-01

Abstract

In this paper we present Ant Colony System for Traffic Assignment (ACS-TA) for the solution of deterministic and stochastic user equilibria (DUE and SUE, respectively) problems. DUE and SUE are two well known transportation problems where the transportation demand has to be assigned to an underlying network (supply in transportation terminology) according to single user satisfaction rather than aiming at some global optimum. ACS-TA turns the classic ACS meta-heuristic for discrete optimization into a technique for equilibrium computation. ACS-TA can be easily adapted to take into account all aspects characterizing the traffic assignment problem: multiple origin-destination pairs, link congestion, non-separable cost link functions, elasticity of demand, multiple classes of demand and different user cost models including stochastic cost perception. Applications to different networks, including a non-separable costs case study and the standard Sioux Falls benchmark, are reported. Results show good performance and wider applicability with respect to conventional approaches especially for stochastic user equilibrium computation.
2013
Ant Colony System; Traffic network; Traffic congestion; Traffic assignment; User equilibrium
File in questo prodotto:
File Dimensione Formato  
SWARM_Matteucci_Mussone_2013.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri
SWARM_Matteucci_Mussone_2013_printed.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/731170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact