Current generation steam cracking plants are considered to be mature. As a consequence it is becoming more and more important to know whether the underlying mechanistic cracking process offers still scope for further improvements. The fundamental kinetic limits to cracking yields have recently been researched in detail for different feed stocks with a new synthesis reactor model, d-RMix, incorporating a large scale mechanistic reaction scheme, SPYRO® [M.W.M. van Goethem, S. Barendregt, J. Grievink, J.A. Moulijn, P.T.J. Verheijen “Model-based, thermo-physical optimisation for high olefin yield in steam cracking reactors”, Chemical Research and Engineering Developments 88 (2010) 1305–1319]. Mathematical optimization revealed for ethane cracking a maximum ethylene yield of about 67 wt%. with a linear-concave optimal temperature profile along the reaction coordinate with a maximum temperature between 1200 and 1300 K. Further mechanistic analysis of these results showed that the linear-concave shape not only suppresses the successive dehydrogenation and condensation reactions of ethylene, but mainly reduces the role of the ethane initiation reaction to form two methyl radicals.
A kinetic modelling study of ethane cracking for optimal ethylene yield
DENTE, MARIO;RANZI, ELISEO MARIA
2013-01-01
Abstract
Current generation steam cracking plants are considered to be mature. As a consequence it is becoming more and more important to know whether the underlying mechanistic cracking process offers still scope for further improvements. The fundamental kinetic limits to cracking yields have recently been researched in detail for different feed stocks with a new synthesis reactor model, d-RMix, incorporating a large scale mechanistic reaction scheme, SPYRO® [M.W.M. van Goethem, S. Barendregt, J. Grievink, J.A. Moulijn, P.T.J. Verheijen “Model-based, thermo-physical optimisation for high olefin yield in steam cracking reactors”, Chemical Research and Engineering Developments 88 (2010) 1305–1319]. Mathematical optimization revealed for ethane cracking a maximum ethylene yield of about 67 wt%. with a linear-concave optimal temperature profile along the reaction coordinate with a maximum temperature between 1200 and 1300 K. Further mechanistic analysis of these results showed that the linear-concave shape not only suppresses the successive dehydrogenation and condensation reactions of ethylene, but mainly reduces the role of the ethane initiation reaction to form two methyl radicals.File | Dimensione | Formato | |
---|---|---|---|
VanGoetem_et_al_CERD2013.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
730.69 kB
Formato
Adobe PDF
|
730.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.