The aim of this work is to collect and review the vast amount of experimental data reported in recent years on benzene pyrolysis and oxidation and to analyze them by using and refining a detailed kinetic mechanism, thereby identifying a sensitive and crucial portion of the mechanism itself. Benzene is the first aromatic compound, a relevant intermediate of several combustion processes and also a key precursor to soot formation. The emphasis here is on high pressure pyrolysis experiments, ignition delay times in shock tubes, premixed flames as well as low temperature reactions with recombination and propagation reactions of cyclopentadienyl and phenoxy radicals playing a significant role. This is the first time the same kinetic model of benzene pyrolysis and oxidation has been compared with such a wide collection of experimental measurements.
A wide range kinetic modeling study of pyrolysis and oxidation of benzene
SAGGESE, CHIARA;FRASSOLDATI, ALESSIO;CUOCI, ALBERTO;FARAVELLI, TIZIANO;RANZI, ELISEO MARIA
2013-01-01
Abstract
The aim of this work is to collect and review the vast amount of experimental data reported in recent years on benzene pyrolysis and oxidation and to analyze them by using and refining a detailed kinetic mechanism, thereby identifying a sensitive and crucial portion of the mechanism itself. Benzene is the first aromatic compound, a relevant intermediate of several combustion processes and also a key precursor to soot formation. The emphasis here is on high pressure pyrolysis experiments, ignition delay times in shock tubes, premixed flames as well as low temperature reactions with recombination and propagation reactions of cyclopentadienyl and phenoxy radicals playing a significant role. This is the first time the same kinetic model of benzene pyrolysis and oxidation has been compared with such a wide collection of experimental measurements.File | Dimensione | Formato | |
---|---|---|---|
Saggese_et_al_CF2013.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
8.31 MB
Formato
Adobe PDF
|
8.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.