A simplified method to cope with the topology optimization of truss–like structures in case of unilateral behavior of material or supports is presented. The conventional formulation for volume–constrained compliance minimization is enriched with a set of stress constraints that enforce a suitable version of the Drucker–Prager strength criterion in order to prevent the arising of tensile (or compressive) members in the whole domain or within limited regions in the vicinity of the supports. The adopted numerical framework combines an ad hoc selection strategy along with the use of aggregation techniques that succeed in driving the energy–based minimization towards feasible designs through the enforcement of a limited number of stress constraints. Numerical simulations assess the proposed optimization framework in comparison with methods that are based on a full non–linear modeling of unilateral material/supports. An extension to the safety analysis of structures made of no–tension material is also highlighted.
A simplified approach to the topology optimization of structures in case of unilateral material/supports
BRUGGI, MATTEO;
2013-01-01
Abstract
A simplified method to cope with the topology optimization of truss–like structures in case of unilateral behavior of material or supports is presented. The conventional formulation for volume–constrained compliance minimization is enriched with a set of stress constraints that enforce a suitable version of the Drucker–Prager strength criterion in order to prevent the arising of tensile (or compressive) members in the whole domain or within limited regions in the vicinity of the supports. The adopted numerical framework combines an ad hoc selection strategy along with the use of aggregation techniques that succeed in driving the energy–based minimization towards feasible designs through the enforcement of a limited number of stress constraints. Numerical simulations assess the proposed optimization framework in comparison with methods that are based on a full non–linear modeling of unilateral material/supports. An extension to the safety analysis of structures made of no–tension material is also highlighted.File | Dimensione | Formato | |
---|---|---|---|
5261.pdf
Accesso riservato
:
Altro materiale allegato
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.