This paper describes the design optimization and fabrication of a hybrid composite material for the passive suppression of flexural vibrations in slender and light structures. The material is made from glass fiber/epoxy resin laminated, reinforced with two thin, fiber-laser patterned sheets of NiTiCu shape memory alloy (SMA). The thickness of the SMA layers and their pattern geometry have been optimized by the numerical calculation of the first natural frequency and of the structural damping of the hybrid composite. In addition to describing the thermo-mechanical characterization of the SMA alloy, selected as a reinforcement, the paper also describes the final dynamic characterization of four, beam-shaped prototypes using the material in question
Passive damping of slender and light structures
BIFFI, CARLO ALBERTO;CARNEVALE, MARCO;LECIS, NORA FRANCESCA MARIA;PREVITALI, BARBARA;LO CONTE, ANTONIETTA
2013-01-01
Abstract
This paper describes the design optimization and fabrication of a hybrid composite material for the passive suppression of flexural vibrations in slender and light structures. The material is made from glass fiber/epoxy resin laminated, reinforced with two thin, fiber-laser patterned sheets of NiTiCu shape memory alloy (SMA). The thickness of the SMA layers and their pattern geometry have been optimized by the numerical calculation of the first natural frequency and of the structural damping of the hybrid composite. In addition to describing the thermo-mechanical characterization of the SMA alloy, selected as a reinforcement, the paper also describes the final dynamic characterization of four, beam-shaped prototypes using the material in questionFile | Dimensione | Formato | |
---|---|---|---|
Definitivo MaterialDesign2013.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.