Aluminum nanopowder (nAl) obtained by electrical explosion of wires and passivated/coated with hydrocarbons and fluorohydrocarbons is comprehensively characterized. Coatings of different natures (octadecanoic and hexadecanoic acid, (1,1,11) trihydroperfluoro-undecan-1-ol, FluorelTM + ester from esterification of (1,1,11) trihydroperfluoro-undecan-1-ol with furan-2,5-dione) were applied on the particle surface. The powders were studied by TEM, SEM, DSC-TGA, and BET specific surface area. The active aluminum content was determined by volumetric analyses. Coated nAl particles were compared to noncoated powder by the corresponding reactivity parameters obtained from DSC-TGA. It was found that while fatty acids have a weak effect on the non-isothermal oxidation behavior, fluoroelastomers shift the oxidation onset of nAl to higher temperatures by ∼20 ◦C for the first oxidation stage and by ∼100 ◦C for the second oxidation stage.

Non-Isothermal Oxidation of Aluminum Nanopowder Coated by Hydrocarbons and Fluorohydrocarbons

PARAVAN, CHRISTIAN;DE LUCA, LUIGI;
2013-01-01

Abstract

Aluminum nanopowder (nAl) obtained by electrical explosion of wires and passivated/coated with hydrocarbons and fluorohydrocarbons is comprehensively characterized. Coatings of different natures (octadecanoic and hexadecanoic acid, (1,1,11) trihydroperfluoro-undecan-1-ol, FluorelTM + ester from esterification of (1,1,11) trihydroperfluoro-undecan-1-ol with furan-2,5-dione) were applied on the particle surface. The powders were studied by TEM, SEM, DSC-TGA, and BET specific surface area. The active aluminum content was determined by volumetric analyses. Coated nAl particles were compared to noncoated powder by the corresponding reactivity parameters obtained from DSC-TGA. It was found that while fatty acids have a weak effect on the non-isothermal oxidation behavior, fluoroelastomers shift the oxidation onset of nAl to higher temperatures by ∼20 ◦C for the first oxidation stage and by ∼100 ◦C for the second oxidation stage.
2013
Aluminum nanopowder; Passivation; Coating; Oxidation; Surface structure
File in questo prodotto:
File Dimensione Formato  
SOSSA02-13.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/716754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 47
social impact