Continuous-thrust orbit transfers are designed by solving an optimal control problem that minimizes fuel consumption while satisfying mission constraints. The optimal control problem is usually solved in nominal conditions: at the design stage, the dynamics modeling is supposed to exactly represent the reality. An algorithm to include uncertain parameters and boundary conditions is presented. This is based on the high-order expansion of the solution of the two-point boundary value problem associated to the optimal control problem with respect to uncertainties. Illustrative applications are presented in the frame of the optimal low-thrust transfer to asteroid 1996 FG3.

Robust Optimal Control of Low-Thrust Interplanetary Transfers

DI LIZIA, PIERLUIGI;ARMELLIN, ROBERTO;BERNELLI ZAZZERA, FRANCO
2013-01-01

Abstract

Continuous-thrust orbit transfers are designed by solving an optimal control problem that minimizes fuel consumption while satisfying mission constraints. The optimal control problem is usually solved in nominal conditions: at the design stage, the dynamics modeling is supposed to exactly represent the reality. An algorithm to include uncertain parameters and boundary conditions is presented. This is based on the high-order expansion of the solution of the two-point boundary value problem associated to the optimal control problem with respect to uncertainties. Illustrative applications are presented in the frame of the optimal low-thrust transfer to asteroid 1996 FG3.
2013
Spaceflight Mechanics 2013
978-0-87703-597-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/713362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact