Continuous-thrust orbit transfers are designed by solving an optimal control problem that minimizes fuel consumption while satisfying mission constraints. The optimal control problem is usually solved in nominal conditions: at the design stage, the dynamics modeling is supposed to exactly represent the reality. An algorithm to include uncertain parameters and boundary conditions is presented. This is based on the high-order expansion of the solution of the two-point boundary value problem associated to the optimal control problem with respect to uncertainties. Illustrative applications are presented in the frame of the optimal low-thrust transfer to asteroid 1996 FG3.
Robust Optimal Control of Low-Thrust Interplanetary Transfers
DI LIZIA, PIERLUIGI;ARMELLIN, ROBERTO;BERNELLI ZAZZERA, FRANCO
2013-01-01
Abstract
Continuous-thrust orbit transfers are designed by solving an optimal control problem that minimizes fuel consumption while satisfying mission constraints. The optimal control problem is usually solved in nominal conditions: at the design stage, the dynamics modeling is supposed to exactly represent the reality. An algorithm to include uncertain parameters and boundary conditions is presented. This is based on the high-order expansion of the solution of the two-point boundary value problem associated to the optimal control problem with respect to uncertainties. Illustrative applications are presented in the frame of the optimal low-thrust transfer to asteroid 1996 FG3.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.