Nanoaluminum powder (nAl, nominal size of particles 50 nm and 100 nm), obtained by electrical explosion of wires, was passivated by air and coated by several different protective organic reagents to assess the effects on ballistics of nAl-loaded hydroxyl-terminated polybutadiene (HTPB)-based solid fuel with respect to pure HTPB baseline. The nAl samples were characterized by transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), and chemical analysis on active aluminum content (Al°) content and added to HTPB-based solid fuels for hybrid propulsion. Combustion tests were carried out burning central-perforated single-port cylindrical samples in a 2D radial burner. Data analysis was performed to obtain a continuous time-resolved regression rate. Coated nAl particles may significantly improve the ballistics of HTPB + nAl formulations burning in gaseous oxygen, with respect to pure HTPB. All investigated formulations with nAl exhibit increase of instantaneous regression rate (up to 89% maximum), depending on coatings and oxidizer mass flux G ox . Fluoroelastomer and fluorine-containing chemicals used for coating show a good compromise between increase in regression rate and low sensitivity to G ox variation under the implemented operating conditions.

Combustion of HTPB-Based Solid Fuels Loaded with Coated Nanoaluminum

PARAVAN, CHRISTIAN;DE LUCA, LUIGI;
2013-01-01

Abstract

Nanoaluminum powder (nAl, nominal size of particles 50 nm and 100 nm), obtained by electrical explosion of wires, was passivated by air and coated by several different protective organic reagents to assess the effects on ballistics of nAl-loaded hydroxyl-terminated polybutadiene (HTPB)-based solid fuel with respect to pure HTPB baseline. The nAl samples were characterized by transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), and chemical analysis on active aluminum content (Al°) content and added to HTPB-based solid fuels for hybrid propulsion. Combustion tests were carried out burning central-perforated single-port cylindrical samples in a 2D radial burner. Data analysis was performed to obtain a continuous time-resolved regression rate. Coated nAl particles may significantly improve the ballistics of HTPB + nAl formulations burning in gaseous oxygen, with respect to pure HTPB. All investigated formulations with nAl exhibit increase of instantaneous regression rate (up to 89% maximum), depending on coatings and oxidizer mass flux G ox . Fluoroelastomer and fluorine-containing chemicals used for coating show a good compromise between increase in regression rate and low sensitivity to G ox variation under the implemented operating conditions.
2013
ALEX; Fluoroelastomer coating; HTPB; Hybrid propulsion; Nanoaluminum; Nanoaluminum powder; Organic coating; Regression rate enhancement
File in questo prodotto:
File Dimensione Formato  
SOSSA01-13.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 923.41 kB
Formato Adobe PDF
923.41 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/711543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 41
social impact