This paper presents a time-to-digital converter (TDC) architecture capable of reaching high-precision and high-linearity with moderate area occupation per measurement channel. The architecture is based on a coarse counter and a couple of two-stage interpolators that exploit the cyclic sliding scale technique in order to improve the conversion linearity. The interpolators are based on a new coarse-fine synchronization circuit and a new single-stage Vernier delay loop fine interpolation. In a standard cost-effective 0.35 mu m CMOS technology the TDC reaches a dynamic range of 160 ns, 17.2 ps precision and differential non-linearity better than 0.9% LSB rms. The TDC building block was designed in order to be easily assembled in a multi-channel monolithic TDC chip. Coupled with a SPAD photodetector it is aimed for TCSPC applications (like FLIM, FCS, FRET) and direct ToF 3-D ranging

A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation

MARKOVIC, BOJAN;TISA, SIMONE;VILLA, FEDERICA ALBERTA;TOSI, ALBERTO;ZAPPA, FRANCO
2013

Abstract

This paper presents a time-to-digital converter (TDC) architecture capable of reaching high-precision and high-linearity with moderate area occupation per measurement channel. The architecture is based on a coarse counter and a couple of two-stage interpolators that exploit the cyclic sliding scale technique in order to improve the conversion linearity. The interpolators are based on a new coarse-fine synchronization circuit and a new single-stage Vernier delay loop fine interpolation. In a standard cost-effective 0.35 mu m CMOS technology the TDC reaches a dynamic range of 160 ns, 17.2 ps precision and differential non-linearity better than 0.9% LSB rms. The TDC building block was designed in order to be easily assembled in a multi-channel monolithic TDC chip. Coupled with a SPAD photodetector it is aimed for TCSPC applications (like FLIM, FCS, FRET) and direct ToF 3-D ranging
File in questo prodotto:
File Dimensione Formato  
06409963.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/705723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 131
  • ???jsp.display-item.citation.isi??? 125
social impact