This paper presents a time-to-digital converter (TDC) architecture capable of reaching high-precision and high-linearity with moderate area occupation per measurement channel. The architecture is based on a coarse counter and a couple of two-stage interpolators that exploit the cyclic sliding scale technique in order to improve the conversion linearity. The interpolators are based on a new coarse-fine synchronization circuit and a new single-stage Vernier delay loop fine interpolation. In a standard cost-effective 0.35 mu m CMOS technology the TDC reaches a dynamic range of 160 ns, 17.2 ps precision and differential non-linearity better than 0.9% LSB rms. The TDC building block was designed in order to be easily assembled in a multi-channel monolithic TDC chip. Coupled with a SPAD photodetector it is aimed for TCSPC applications (like FLIM, FCS, FRET) and direct ToF 3-D ranging
A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation
MARKOVIC, BOJAN;TISA, SIMONE;VILLA, FEDERICA ALBERTA;TOSI, ALBERTO;ZAPPA, FRANCO
2013-01-01
Abstract
This paper presents a time-to-digital converter (TDC) architecture capable of reaching high-precision and high-linearity with moderate area occupation per measurement channel. The architecture is based on a coarse counter and a couple of two-stage interpolators that exploit the cyclic sliding scale technique in order to improve the conversion linearity. The interpolators are based on a new coarse-fine synchronization circuit and a new single-stage Vernier delay loop fine interpolation. In a standard cost-effective 0.35 mu m CMOS technology the TDC reaches a dynamic range of 160 ns, 17.2 ps precision and differential non-linearity better than 0.9% LSB rms. The TDC building block was designed in order to be easily assembled in a multi-channel monolithic TDC chip. Coupled with a SPAD photodetector it is aimed for TCSPC applications (like FLIM, FCS, FRET) and direct ToF 3-D rangingFile | Dimensione | Formato | |
---|---|---|---|
06409963.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.52 MB
Formato
Adobe PDF
|
3.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.