We investigate the possibility of modeling the delayed afterdepolarization (DAD) occurrence in the framework of the classical FitzHugh-Nagumo (FN) dynamical system, as well as in more recent electromechanically-coupled cardiac models. Within the FN model, we identify the domain in the constitutive parameters' space for which orbits exist which exhibit a sufficiently strong secondary impulse. We then address the question whether a locally-induced secondary pulse succeeds or not in originating a self-propagating traveling impulse. Our results evidence that, in the range where secondary impulses exceed the physiological threshold for DAD onset, a local impulse almost certainly causes a traveling impulse (mechanism known as all-or-none). We then consider a recently proposed electromechanically-coupled generalization of the FN model, and show that the mechanical coupling stabilizes the system, in the sense that the more strong the coupling, the less likely is DAD to occur.

DAD characterization in electromechanical cardiac models

LELLI, CHIARA;BISCARI, PAOLO
2013

Abstract

We investigate the possibility of modeling the delayed afterdepolarization (DAD) occurrence in the framework of the classical FitzHugh-Nagumo (FN) dynamical system, as well as in more recent electromechanically-coupled cardiac models. Within the FN model, we identify the domain in the constitutive parameters' space for which orbits exist which exhibit a sufficiently strong secondary impulse. We then address the question whether a locally-induced secondary pulse succeeds or not in originating a self-propagating traveling impulse. Our results evidence that, in the range where secondary impulses exceed the physiological threshold for DAD onset, a local impulse almost certainly causes a traveling impulse (mechanism known as all-or-none). We then consider a recently proposed electromechanically-coupled generalization of the FN model, and show that the mechanical coupling stabilizes the system, in the sense that the more strong the coupling, the less likely is DAD to occur.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/703167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact