We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. The resulting three fields problem (fluid/ structure/ fluid domain) is formalized via the introduction of three Lagrange multipliers and consistently discretized by p-th order backward differentiation formulae (BDFp). We focus on partitioned algorithms for its numerical solution, which consist in the successive solution of the three subproblems. We review several strategies that all rely on the exchange of Robin interface conditions and review their performances reported recently in the literature. We also analyze the stability of explicit partitioned procedures and convergence of iterative implicit partitioned procedures on a simple linear FSI problem for a general BDFp temporal discretizations.

Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics

NOBILE, FABIO;VERGARA, CHRISTIAN
2012-01-01

Abstract

We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. The resulting three fields problem (fluid/ structure/ fluid domain) is formalized via the introduction of three Lagrange multipliers and consistently discretized by p-th order backward differentiation formulae (BDFp). We focus on partitioned algorithms for its numerical solution, which consist in the successive solution of the three subproblems. We review several strategies that all rely on the exchange of Robin interface conditions and review their performances reported recently in the literature. We also analyze the stability of explicit partitioned procedures and convergence of iterative implicit partitioned procedures on a simple linear FSI problem for a general BDFp temporal discretizations.
2012
Fluid-structure interaction; incompressible fluids; finite elasticity; haemodynamics; partitioned algorithms; added mass effect
File in questo prodotto:
File Dimensione Formato  
nv2-MJM12.pdf

Accesso riservato

: Publisher’s version
Dimensione 505.58 kB
Formato Adobe PDF
505.58 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/701725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact