A kinetic model for the study of capillary flows in micromechanical devices has been presented. The model is based on the Enskog-Vlasov kinetic equation and provides a reasonable description of two-phase flows and of fluid-surface interaction. The structure of liquid menisci between two hydrophilic walls has been studied and our results agree fairly well with the Laplace-Kelvin equation. Meniscus breakage has been computed and a possible explanation of the phenomenon has been given.
A kinetic model for capillary flows in MEMS
BARBANTE, PAOLO FRANCESCO;FREZZOTTI, ALDO;GIBELLI, LIVIO;LEGRENZI, PAOLO;CORIGLIANO, ALBERTO;FRANGI, ATTILIO ALBERTO
2012-01-01
Abstract
A kinetic model for the study of capillary flows in micromechanical devices has been presented. The model is based on the Enskog-Vlasov kinetic equation and provides a reasonable description of two-phase flows and of fluid-surface interaction. The structure of liquid menisci between two hydrophilic walls has been studied and our results agree fairly well with the Laplace-Kelvin equation. Meniscus breakage has been computed and a possible explanation of the phenomenon has been given.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
APC000713.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.