The GREEN METALLURGY Project, a LIFE+ project co-financed by the EU Commission, has just concluded its first year. The Project seeks to set manufacturing processes at a pre-industrial scale for nanostructured-based high-performance Mg-Zn(Y) magnesium alloys. The Project's goal is the reduction of specific energy consumed and the overall carbon-footprint produced in the cradle-to-exit gate phases. Preliminary results addressed potentialities of the upstream manufacturing process pathway. Two Mg-Zn(Y) system alloys with rapid solidifying powders have been produced and directly extruded for 100% densification. Examination of the mechanical properties showed that such materials exhibit strength and elongation comparable to several high performing aluminum alloys; 390 MPa and 440 MPa for the average UTS for two different system alloys, and 10% and 15% elongations for two system alloys. These results, together with the low-environmental impact targeted, make these novel Mg alloys competitive as lightweight high-performance materials for automotive components.

High performance Mg-system alloys for weight saving applications: First year results from the green metallurgy EU project

D'ERRICO, FABRIZIO;
2012-01-01

Abstract

The GREEN METALLURGY Project, a LIFE+ project co-financed by the EU Commission, has just concluded its first year. The Project seeks to set manufacturing processes at a pre-industrial scale for nanostructured-based high-performance Mg-Zn(Y) magnesium alloys. The Project's goal is the reduction of specific energy consumed and the overall carbon-footprint produced in the cradle-to-exit gate phases. Preliminary results addressed potentialities of the upstream manufacturing process pathway. Two Mg-Zn(Y) system alloys with rapid solidifying powders have been produced and directly extruded for 100% densification. Examination of the mechanical properties showed that such materials exhibit strength and elongation comparable to several high performing aluminum alloys; 390 MPa and 440 MPa for the average UTS for two different system alloys, and 10% and 15% elongations for two system alloys. These results, together with the low-environmental impact targeted, make these novel Mg alloys competitive as lightweight high-performance materials for automotive components.
2012
Magnesium Technology 2012
9781118291214
CO 2 reduction, Magnesium alloys, Sustainability, Ultrafine microstructure
File in questo prodotto:
File Dimensione Formato  
High Performnce Mg-system alloys for weigth saving applications.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 592.54 kB
Formato Adobe PDF
592.54 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/691766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact