This paper deals with the probabilistic 6DoF motion model of a wheeled road vehicle. It allows to correctly model the error introduced by dead reckoning. Furthermore, to stress the importance of an appropriate motion model, i.e., that different models are not equally good, we show that another model, which was previously developed, does not allow a correct representation of the uncertainty, therefore misguiding 3D-6DoF Monte Carlo Localization. We also present some field experiments to demonstrate that our model allow a consistent determination of the 6DoF vehicle pose.

An effective 6DoF motion model for 3D-6DoF Monte Carlo Localization

MATTEUCCI, MATTEO;
2012-01-01

Abstract

This paper deals with the probabilistic 6DoF motion model of a wheeled road vehicle. It allows to correctly model the error introduced by dead reckoning. Furthermore, to stress the importance of an appropriate motion model, i.e., that different models are not equally good, we show that another model, which was previously developed, does not allow a correct representation of the uncertainty, therefore misguiding 3D-6DoF Monte Carlo Localization. We also present some field experiments to demonstrate that our model allow a consistent determination of the 6DoF vehicle pose.
2012
In Proceedings of 4th Workshop on Planning, Perception and Navigation for Intelligent Vehicles (IEEE/RJS IROS 2012)
File in questo prodotto:
File Dimensione Formato  
Ballardini_2012_IROS.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.8 MB
Formato Adobe PDF
4.8 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/691219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact