Regional height systems do not refer to a common equipotential surface, such as the geoid. They are usually referred to the mean sea level at a reference tide gauge. As mean sea level varies (by ±1 to 2 m) from place to place and from continent to continent each tide gauge has an unknown bias with respect to a common reference surface, whose determination is what the height datum problem is concerned with. This paper deals with this problem, in connection to the availability of satellite gravity missions data. Since biased heights enter into the computation of terrestrial gravity anomalies, which in turn are used for geoid determination, the biases enter as secondary or indirect effect also in such a geoid model. In contrast to terrestrial gravity anomalies, gravity and geoid models derived from satellite gravity missions, and in particular GRACE and GOCE, do not suffer from those inconsistencies. Those models can be regarded as unbiased. After a review of the mathematical formulation of the problem, the paper examines two alternative approaches to its solution. The first one compares the gravity potential coefficients in the range of degrees from 100 to 200 of an unbiased gravity field from GOCE with those of the combined model EGM2008, that in this range is affected by the height biases. This first proposal yields a solution too inaccurate to be useful. The second approach compares height anomalies derived from GNSS ellipsoidal heights and biased normal heights, with anomalies derived from an anomalous potential which combines a satellite-only model up to degree 200 and a high-resolution global model above 200. The point is to show that in this last combination the indirect effects of the height biases are negligible. To this aim, an error budget analysis is performed. The biases of the high frequency part are proved to be irrelevant, so that an accuracy of 5 cm per individual GNSS station is found. This seems to be a promising practical method to solve the problem.

The height datum problem and the role of satellite gravity models

GATTI, ANDREA;REGUZZONI, MIRKO;VENUTI, GIOVANNA
2013-01-01

Abstract

Regional height systems do not refer to a common equipotential surface, such as the geoid. They are usually referred to the mean sea level at a reference tide gauge. As mean sea level varies (by ±1 to 2 m) from place to place and from continent to continent each tide gauge has an unknown bias with respect to a common reference surface, whose determination is what the height datum problem is concerned with. This paper deals with this problem, in connection to the availability of satellite gravity missions data. Since biased heights enter into the computation of terrestrial gravity anomalies, which in turn are used for geoid determination, the biases enter as secondary or indirect effect also in such a geoid model. In contrast to terrestrial gravity anomalies, gravity and geoid models derived from satellite gravity missions, and in particular GRACE and GOCE, do not suffer from those inconsistencies. Those models can be regarded as unbiased. After a review of the mathematical formulation of the problem, the paper examines two alternative approaches to its solution. The first one compares the gravity potential coefficients in the range of degrees from 100 to 200 of an unbiased gravity field from GOCE with those of the combined model EGM2008, that in this range is affected by the height biases. This first proposal yields a solution too inaccurate to be useful. The second approach compares height anomalies derived from GNSS ellipsoidal heights and biased normal heights, with anomalies derived from an anomalous potential which combines a satellite-only model up to degree 200 and a high-resolution global model above 200. The point is to show that in this last combination the indirect effects of the height biases are negligible. To this aim, an error budget analysis is performed. The biases of the high frequency part are proved to be irrelevant, so that an accuracy of 5 cm per individual GNSS station is found. This seems to be a promising practical method to solve the problem.
2013
Height datum; GOCE; EGM2008
File in questo prodotto:
File Dimensione Formato  
Gatti_etal_JOGE2012.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 469.63 kB
Formato Adobe PDF
469.63 kB Adobe PDF   Visualizza/Apri
Gatti_etal_2012_JoGe_87_1.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 451.03 kB
Formato Adobe PDF
451.03 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/690114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 33
social impact