In this paper we focus on a single carrier pilotassisted transmission scheme where one pilot symbol is periodically inserted in the transmitted sequence on a time-division multiplexing basis. A new equalization scheme, where the knowledge of pilot symbols is exploited by the equalizer to generate an estimate of the noise affecting the symbol to be detected, is introduced and analyzed. The criterion used to compute the equalizer coefficients is the minimization of the mean-square error (MSE). The main new result of our analysis is that the optimal pilot aided equalizer (PAE) can be decomposed as the cascade of an unconstrained minimum MSE (MMSE) linear equalizer (LE) and a data-aided noise estimation filter. This result completes and extends the noise-predictive view of decision feedback equalization to general data-aided equalization. The PAE is compared here to the MMSE-LE and to the MSE decision feedback equalizer on two frequency selective wireless channels.

Pilot-Aided Equalization with a Constrained Noise-Estimation Filter

MAGARINI, MAURIZIO;SPALVIERI, ARNALDO;BARLETTA, LUCA
2012-01-01

Abstract

In this paper we focus on a single carrier pilotassisted transmission scheme where one pilot symbol is periodically inserted in the transmitted sequence on a time-division multiplexing basis. A new equalization scheme, where the knowledge of pilot symbols is exploited by the equalizer to generate an estimate of the noise affecting the symbol to be detected, is introduced and analyzed. The criterion used to compute the equalizer coefficients is the minimization of the mean-square error (MSE). The main new result of our analysis is that the optimal pilot aided equalizer (PAE) can be decomposed as the cascade of an unconstrained minimum MSE (MMSE) linear equalizer (LE) and a data-aided noise estimation filter. This result completes and extends the noise-predictive view of decision feedback equalization to general data-aided equalization. The PAE is compared here to the MMSE-LE and to the MSE decision feedback equalizer on two frequency selective wireless channels.
2012
Proceedings of 2012 IEEE Vehicular Technology Conference
9781467318815
TEL
File in questo prodotto:
File Dimensione Formato  
pilot_equalizer_VTCFall2012.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 242.72 kB
Formato Adobe PDF
242.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/688834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact