This paper discusses the impact behaviour of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s. First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers. Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.
Comparison of Self-Healing Ionomer to Aluminium-Alloy Bumpers for Protecting Spacecraft Equipment from Space Debris Impacts
GRANDE, ANTONIO MATTIA;DI LANDRO, LUCA ANGELO;
2013-01-01
Abstract
This paper discusses the impact behaviour of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s. First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers. Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.File | Dimensione | Formato | |
---|---|---|---|
FRANA01-13.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
890.06 kB
Formato
Adobe PDF
|
890.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.