Sedimentation has played a key role in the development of colloid science. In fact, it is because of the celebrated experiments by Perrin, yielding a concrete demonstration of molecular reality and giving strong support to Einstein's theory of Brownian motion, that colloids enter the realm of basic physics. Subsequent investigations have shown that a lot more can be learnt both from sedimentation equilibrium and from particle settling dynamics. These advances, together with new experimental approaches, will be reviewed in this paper. Yet, we shall also show that inquiring about gravity settling is far from being a closed matter: for instance, the concept of buoyancy for a settling colloidal mixture is far from being obvious. Moreover, sedimentation holds novel surprises, such as colloidal inflations and settling disasters, showing that a simple external field like gravity may induce mind-boggling, and theoretically challenging effects.

The unbearable heaviness of colloids: facts, surprises, and puzzles in sedimentation

PIAZZA, ROBERTO;BUZZACCARO, STEFANO;SECCHI, ELEONORA
2012-01-01

Abstract

Sedimentation has played a key role in the development of colloid science. In fact, it is because of the celebrated experiments by Perrin, yielding a concrete demonstration of molecular reality and giving strong support to Einstein's theory of Brownian motion, that colloids enter the realm of basic physics. Subsequent investigations have shown that a lot more can be learnt both from sedimentation equilibrium and from particle settling dynamics. These advances, together with new experimental approaches, will be reviewed in this paper. Yet, we shall also show that inquiring about gravity settling is far from being a closed matter: for instance, the concept of buoyancy for a settling colloidal mixture is far from being obvious. Moreover, sedimentation holds novel surprises, such as colloidal inflations and settling disasters, showing that a simple external field like gravity may induce mind-boggling, and theoretically challenging effects.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/686613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact