In this article we study hardware-oriented versions of the recently appeared Layered ORthogonal lattice Detector (LORD) and Turbo LORD (T-LORD). LORD and T-LORD are attractive Multiple-Input Multiple-Output (MIMO) detection algorithms, that aim to approach the optimal Maximum-Likelihood (ML) and Maximum-A-Posteriori (MAP) performance, respectively, yet allowing a complexity quadratic in the number of transmitting antennas rather than exponential. LORD and T-LORD are also well suited to a hardware (e.g., ASIC or FPGA) implementation because of their regularity, parallelism, deterministic latency, and complexity. Nevertheless, their complexity is still high in case of high cardinality constellations, such as the 64-QAM foreseen by the 802.11n standard. We show that, when only global latency constraints exist, e.g., a fixed time to detect the whole OFDM symbol, the LORD and T-LORD complexity can be remarkably reduced, still approaching the ML and MAP performance, respectively. Notwithstanding the suboptimal low-complexity and hardware-oriented implementation, LORD and T-LORD approach the EXtrinsic Information Transfer of the ML and MAP detectors, respectively. To focus on a specific setting, we consider the indoor MIMO wireless LAN 802.11n standard, taking into account errors in channel estimation and a frequency selective, spatially correlated channel model.

Hardware oriented, quasi-optimal detectors for iterative and non-iterative MIMO receivers

TOMASONI, ALESSANDRO;FERRARI, MARCO PIETRO;BELLINI, SANDRO
2012-01-01

Abstract

In this article we study hardware-oriented versions of the recently appeared Layered ORthogonal lattice Detector (LORD) and Turbo LORD (T-LORD). LORD and T-LORD are attractive Multiple-Input Multiple-Output (MIMO) detection algorithms, that aim to approach the optimal Maximum-Likelihood (ML) and Maximum-A-Posteriori (MAP) performance, respectively, yet allowing a complexity quadratic in the number of transmitting antennas rather than exponential. LORD and T-LORD are also well suited to a hardware (e.g., ASIC or FPGA) implementation because of their regularity, parallelism, deterministic latency, and complexity. Nevertheless, their complexity is still high in case of high cardinality constellations, such as the 64-QAM foreseen by the 802.11n standard. We show that, when only global latency constraints exist, e.g., a fixed time to detect the whole OFDM symbol, the LORD and T-LORD complexity can be remarkably reduced, still approaching the ML and MAP performance, respectively. Notwithstanding the suboptimal low-complexity and hardware-oriented implementation, LORD and T-LORD approach the EXtrinsic Information Transfer of the ML and MAP detectors, respectively. To focus on a specific setting, we consider the indoor MIMO wireless LAN 802.11n standard, taking into account errors in channel estimation and a frequency selective, spatially correlated channel model.
MIMO systems, space-frequency BICM, OFDM, ML and MAP detection, Turbo detection, EXIT charts
File in questo prodotto:
File Dimensione Formato  
1687-1499-2012-62.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 528.29 kB
Formato Adobe PDF
528.29 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/685846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact