We consider the k-Hyperplane Clustering problem where, given a set of m points in R^n, we have to partition the set into k subsets (clusters) and determine a hyperplane for each of them, so as to minimize the sum of the square of the Euclidean distance between each point and the hyperplane of the corresponding cluster. We give a nonconvex mixed-integer quadratically constrained quadratic programming formulation for the problem. Since even very small-size instances are challenging for state-of-the-art spatial branch-and-bound solvers like Couenne, we propose a heuristic in which many critical points are reassigned at each iteration. Such points, which are likely to be ill-assigned in the current solution, are identified using a distance-based criterion and their number is progressively decreased to zero. Our algorithm outperforms the state-of-the-art one proposed by Bradley and Mangasarian on a set of real-world and structured randomly generated instances. For the largest group of instances, we obtain an average improvement in the solution quality of 54%.
A distance-based point-reassignment heuristic for the k-hyperplane clustering problem
AMALDI, EDOARDO;CONIGLIO, STEFANO
2013-01-01
Abstract
We consider the k-Hyperplane Clustering problem where, given a set of m points in R^n, we have to partition the set into k subsets (clusters) and determine a hyperplane for each of them, so as to minimize the sum of the square of the Euclidean distance between each point and the hyperplane of the corresponding cluster. We give a nonconvex mixed-integer quadratically constrained quadratic programming formulation for the problem. Since even very small-size instances are challenging for state-of-the-art spatial branch-and-bound solvers like Couenne, we propose a heuristic in which many critical points are reassigned at each iteration. Such points, which are likely to be ill-assigned in the current solution, are identified using a distance-based criterion and their number is progressively decreased to zero. Our algorithm outperforms the state-of-the-art one proposed by Bradley and Mangasarian on a set of real-world and structured randomly generated instances. For the largest group of instances, we obtain an average improvement in the solution quality of 54%.File | Dimensione | Formato | |
---|---|---|---|
k-Hyperplane-Clustering-EJOR-03.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
535.14 kB
Formato
Adobe PDF
|
535.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.