N-Acryloyl-N'-phenylpiperazine is a promoter of redox reactions synthesized recently, and proposed as an activator for the polymerization of acrylic resins for biomedical use. The chemical was analyzed for different genotoxicity endpoints, to obtain both information on its possible mutagenic/carcinogenic potential and a model analysis of a tertiary arylamine, which belongs to a class of chemicals commonly used as polymerization accelerators in the biomaterial field. The genotoxicity endpoints considered were: gene mutation in the Salmonella test; structural and numerical chromosome alterations in Chinese hamster V79 cells, evaluated by the micronucleus test together with an immunofluorescent staining specific for kinetochore proteins; in vitro and in vivo DNA damage, evaluated in V79 cells and in mouse liver by the alkaline DNA elution technique. On the whole, the results indicate that N-acryloyl-N'-phenylpiperazine is to be regarded not so much as a DNA-damaging agent, but as a genomic mutagen. Indeed, it was not mutagenic in Salmonella (though its toxicity did not allow testing concentrations over 70 micrograms/plate), and it was weakly positive in inducing chromosomal fragmentation in vitro (one positive, not dose-related, result out of five different doses tested) and in vivo DNA damage (increases in DNA elution rate never doubling control values). The chemical was, however, clearly positive (with dose-dependent effects up to about 25 times the control value) in causing numerical chromosome alterations, at the maximal non-toxic doses

Genotoxicity of N-acryloyl-N'-phenylpiperazine, a redox activator for acrylic resin polymerization

TANZI, MARIA CRISTINA;
1992-01-01

Abstract

N-Acryloyl-N'-phenylpiperazine is a promoter of redox reactions synthesized recently, and proposed as an activator for the polymerization of acrylic resins for biomedical use. The chemical was analyzed for different genotoxicity endpoints, to obtain both information on its possible mutagenic/carcinogenic potential and a model analysis of a tertiary arylamine, which belongs to a class of chemicals commonly used as polymerization accelerators in the biomaterial field. The genotoxicity endpoints considered were: gene mutation in the Salmonella test; structural and numerical chromosome alterations in Chinese hamster V79 cells, evaluated by the micronucleus test together with an immunofluorescent staining specific for kinetochore proteins; in vitro and in vivo DNA damage, evaluated in V79 cells and in mouse liver by the alkaline DNA elution technique. On the whole, the results indicate that N-acryloyl-N'-phenylpiperazine is to be regarded not so much as a DNA-damaging agent, but as a genomic mutagen. Indeed, it was not mutagenic in Salmonella (though its toxicity did not allow testing concentrations over 70 micrograms/plate), and it was weakly positive in inducing chromosomal fragmentation in vitro (one positive, not dose-related, result out of five different doses tested) and in vivo DNA damage (increases in DNA elution rate never doubling control values). The chemical was, however, clearly positive (with dose-dependent effects up to about 25 times the control value) in causing numerical chromosome alterations, at the maximal non-toxic doses
1992
File in questo prodotto:
File Dimensione Formato  
Abstract Mutat Res 1992.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 151.54 kB
Formato Adobe PDF
151.54 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/668050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact